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Evals

- Final train accuracy
- Final val accuracy
- In-distribution test accuracy
- Out-of-distribution test accuracy



Background (things to mention)

–What is a neural network?  

–Mention various choices: number of hidden layers, dimension of hidden layers, 
activation function, choice of stochastic gradient descent algorithm, but most 
important choice turned out to be encoding of input and output vectors

–Universal Approximation Theorem  (approximate arbitrarily well on *bounded* 
domain (same true for polynomials..)



The problem:

How does the encoding affect how 
hard it is for a neural network learn 

number-theoretic functions?



Model architecture + training details

- Model: 2-layer MLP 
- Optimizer: SGD with learning rate 1e-3
- Loss: Binary cross-entropy*
- Hidden Layers: 1
- Input dim: N/A
- Hidden dim: N/A
- Output dim: N/A
- Samples: 8192
- Batch size: 32
- Epochs: 50
- Train-test split: 80% train, 20% test
- Out-of-distribution test samples: 1024



Neural Network

Reference: Tensorflow playground



“k-ary” Representations

➢ Binary representations (k = 2) ➢ Ternary representations (k = 3)

Examples:

References: learningc.org, geeksforgeeks.org



Parity

Function Details:

● Input: x∈ℤ
● Output: f(x)∈{0, 1}

Encoding: 

➢ Case 1: The input & output are integers
○ Resorts to random guessing (50% Training Accuracy)

➢ Case 2: The input & output are binary representations
○ 100% Training Accuracy
○ Neural network simply looks at the 0th element of the binary

f(x) = x (mod 2)



Parity Performance



Modular Arithmetic Experimentation

➢ We vary parameter k: ‘k-ary’ 
representation (binary, …, 20-ary)

➢ We also vary parameter n: ‘mod n’ (2-20)
➢ If k = n, super high accuracy but breaks 

down around n=k=12
➢ If k divides n, super high accuracy!

○ E.g. k = 6, n = 3 vs n = 4
➢ If k and n are relatively prime, difficulty

○ E.g. k = 7, n = 6
➢ Explanations

f(x) = x (mod n)



Generalizing Hamming Weight

- The Hamming Weight of a bitstring s is the number of 1’s in the bitstring. 
- For example, Wt(00110) = 2, Wt(11011) = 4, Wt(10) = 1

- Two output encodings: either one real output, and another with two 
outputs measuring probabilities that it is 0 and 1



Hamming Weight Performance



Determine Prime
A prime number is a natural number greater 
than 1 that is not a product of two smaller 
natural numbers.

● If n is not square free, Mobius outputs 0
● If n is square free, Mobius tells us the 

whether n has a odd or even number of 
prime divisors

○ 1 if even
○ -1 if odd 

The Mobius Function

Image Source: https://en.wikipedia.org/wiki/M%C3%B6bius_function
Image Source: https://www.geeksforgeeks.org/prime-numbers/



Determine Prime
Encoding 

Integer: Normalized between 0 and 1

Binary: 14-bit representation

Modular: an array of remainders when 

divided by primes up to N=100

Something Interesting 

- Increasing the 
sample size doesn’t 
seem to help 
performance

- Modular slightly 
outperforms the 
others

- Overall, Prime is 
learnable

Loss Curves
Integer encoding has a nearly constant loss 
curve, suggesting the model struggles.
Binary and Modular embeddings show a steep 
drop in loss, indicating faster learning.

Accuracy Trends
Integer encoding accuracy remains constant 
(~88%), suggesting a bias toward a simple rule.
Binary encoding achieves stable accuracy but 
fluctuates.
Modular encoding performs similarly but with 
more variance.



Prime Determination Performance

Left to right, top to bottom:
Integer, binary, and modular 
embeddings



The Mobius Function
Integer

- Loss decreases slightly but fluctuates, showing minimal learning progress.
- Accuracy remains constant (~38%), suggesting the model struggles to generalize.

Binary
- Loss decreases consistently but at a slower rate compared to modular.
- Accuracy fluctuates but reaches ~57%, making it an effective encoding for learning 

the Möbius function.

Modular
- Loss decreases steadily, indicating effective learning.
- Accuracy starts low (~40%) but gradually improves to ~48%, showing that modular 

encoding is informative but harder to learn.

Conclusions
- Integer encoding is the least effective, likely due to its smooth structure, which lacks 

rich features for learning Möbius.
- Binary encoding performs good, suggesting that the bitwise structure provides 

useful patterns.
- Modular encoding is intermediate but has higher variance, possibly requiring a 

deeper network.



Mobius Function Performance

Left to right, top to bottom:
Integer, binary, and modular 
embeddings



Some More Experiments

Experiments on predicting the Mobius Function varying encoding, 
sample size, and number of hidden layers. 

- Modular outperform the others when number of hidden layers 
increase. 

- Sample size and number of hidden layers doesn’t affect the 
performance of binary much.

- Integer struggled. 

Inspired by a workshop at Working Mathematician 
Seminar, which encodes numbers as binary and 
learns the probability of each possible output. 

https://www.google.com/url?q=https%3A%2F%2Fsites.google.com%2Fview%2Fmlwm-seminar-2022
https://www.google.com/url?q=https%3A%2F%2Fsites.google.com%2Fview%2Fmlwm-seminar-2022


Totient Function
- Definition
- counts the positive integers up to a given 

integer n that are relatively prime to n
- Encoding:  𝑛 n in m-ary representation 

(e.g., binary, base 3, etc.).
- Label: 𝜑(n) mod 10
- For example: Given integer 1234, the 

label will be 𝜑(1234) % 10, which is 6

Findings:

1. Training Behavior
Training loss converges across different bases, showing that the model 
learns some structure.

2. Accuracy is low (~40%), meaning the MLP struggles to generalize.
3. Test and OOD accuracy fluctuate across bases, with no clear trend of 

improvement.
4. The model likely captures some structure but fails to generalize well.



Totient Function - more experiments
Investigate the impact of changing the modular value 
when computing 𝜑(n):

- Changing modular of Euler’s Totient Function
- Encoding: binary
- Label: 𝜑(n) % modular

For example: Given integer 1234, the label will be 𝜑
(1234) % modular, which is 6 when modular is 10

- Reach the highest accuracy at 𝜑(x) % 3

Whether two given numbers are coprime:

- Due to the definition of Euler’s Totient Function, I 
also examined on simple MLP’s ability to learn if two 
given numbers are coprime. 

- The accuracy is around 60 to 70%, which reach the 
highest accuracy at base 6.

- The simple MLP performs better on coprimality 
classification than on learning the totient function.



Python Code Synthesis


