Functions NN's Can Learn
WXML: Math Al Lab

Evals

- Final train accuracy

- Final val accuracy

- In-distribution test accuracy

- Out-of-distribution test accuracy

Background (things to mention)

—What is a neural network?

—Mention various choices: number of hidden layers, dimension of hidden layers,
activation function, choice of stochastic gradient descent algorithm, but most
important choice turned out to be encoding of input and output vectors

—Universal Approximation Theorem (approximate arbitrarily well on *bounded*
domain (same true for polynomials..)

The problem:

How does the encoding affect how
hard it is for a neural network learn
number-theoretic functions?

Model architecture + training details

- Model: 2-layer MLP

- Optimizer: SGD with learning rate 1e-3
- Loss: Binary cross-entropy*

- Hidden Layers: 1

- Input dim: N/A

- Hidden dim: N/A

- Output dim: N/A

- Samples: 8192

- Batch size: 32

- Epochs: 50

- Train-test split: 80% train, 20% test

- Out-of-distribution test samples: 1024

Neural Network

FEATURES + — 3 HIDDEN LAYERS OUTPUT
Which ' ' Test loss 0.001
properties do Training loss 0.000
+ - + - + - -
you want to
feed in? 4 neurons 4 neurons 2 neurons 6
X B— 5
1 “\\\ -~ Q 4
N\ /7
! 3
i\
X2 N) i | ‘ 2
\\\ \\‘\\ j ~,
\ 1
AR
(WY &
X 2 \\\\ \N_ L7 0
1) \\\ ~, O eo) 1
\
\\\\ / -
2 \\\ >
o) -4
< The outputs are 5
X1X2 This is the output mixed with varying
from one neuron. weights, shown -6
Hover to see it by the thickness 6 5 4 3 2 -1 0
e larger. of the lines.
QN 3

Reference: Tensorflow playground

“k-ary” Representations

Examples:
> Binary representations (k = 2) > Ternary representations (k = 3)
; 27 28 25 2% 23 22 o1 0 Ternary to Decimal Conversion
srayrumser 10001010 N E D a5 e
B;r;imz: 1+26 0+25 0+24Q E (f T (f T
conversionl23 1 422 O +21X1 + 0 Q 24 33 32 o 30
Decimal numoer (138)14 > 34q + 3340 + 32+ + 314 +30%0

—>81+0+18+0+2

=> 10119

References: learningc.org, geeksforgeeks.org

Parity
f(x) = x (mod 2)

Function Details:

e Input: xXEZ
e Output: f(x)€{0, 1}

Encoding:

> (Case 1: The input & output are integers
o Resorts to random guessing (50% Training Accuracy)
> (Case 2: The input & output are binary representations

o 100% Training Accuracy
o Neural network simply looks at the Oth element of the binary

Loss curve (Parity): 3 layers, 8192

35
30
5

555555

000000

000000

000000

ooooo

000000

uracy (%
°

epoch
Accuracy curve (Parity): 3 layers, 8192 samples

Final accuracy (Hamming): 3 layers, 8192 samples

35

30

25

20

loss

15

10

0.5

0.4

0.3

0.2

Final Accuracy (% bits correct)

0.1

0.0

Parity Performance

Loss curve (Parity): 3 layers, 8192 samples

= train loss
——— test loss
——— test loss (OOD)

0 10 20 30 40 50
epoch

Final accuracy (Hamming): 3 layers, 8192 samples

train test test (OOD)

Accuracy

0.5175

0.5150 -

0.5125

0.5100

0.5075

0.5050

0.5025

0.5000

0.4975

Accuracy curve (Parity): 3 layers, 8192 samples

- train acc
- test acc
- test acc (OOD)

20

epoch

30

40

50

Modular Arithmetic Experimentation

vV

f(x) = x (mod n)

We vary parameter k: ‘k-ary’
representation (binary, ..., 20-ary)

We also vary parameter n: ‘mod n’ (2-20)
If k = n, super high accuracy but breaks
down around n=k=12

If k divides n, super high accuracy!
o Eg.k=6,n=3vsn=4

If k and n are relatively prime, difficulty
o Egk=7,n=6

Explanations

base
10 11 12 13 14 15 16 17 18 19 20

Accuracy Heat Map (Y-axis Flipped)

114:10.350.40 0.39 0.190.16 0.19 0.120.43 0.110.13 0.09 0.090.12 0.10 0.07 0.07 0.07 (X3}

0,52 0.350.26 0.22 0.180.15 0.14 0.130.14 0.11 0.10 0.09 0.09 0.08 0.08 0.07 0.08[IX510.39

11:10.36 0.32@0.22 0.160.17 0.13[eReks} °7-=10.13 0.10 0.110.25 0.09 0.08 0.08 0.07@
0.52141:10.29 0.23 0.310.16 0.14)¥[6]0.41 0.110.16 0.10 0.090.13 0.08 0.08“0.08 0.22

a
-0.4
~
o
n
- 0.2

ARO[} 0.37 pMele] 0.37 0.35 0.17 [0A=£:10.14 0.21 0.12 0.34 0.11 0.15 0.100.16 0.130.07 0.22

0.190.16pMe9]0.14 0.130.27 0.11 0.100.21 0.09 0.09.0.08 0.08

ANe[0] 0.39 M) 0.25 0.37 0.20pMe[9J0.16 0.23 0.130.350.11 0.160.10 0.100.150.09 0.23

ll() lll 1I2 1I3 1I4 1I5 16 1'7 1'8 1'9 ZIO
n

Generalizing Hamming Weight

- The Hamming Weight of a bitstring s is the number of 1's in the bitstring.
- For example, Wt(00110) = 2, Wt(11011) = 4, Wt(10) = 1

- Two output encodings: either one real output, and another with two
outputs measuring probabilities that it is 0 and 1

Loss curve (Hamming): 3 layers, 8192 samples Accurac y curve (Hamming): 3 layers, 8192 samples Final accuracy (Hamming): 3 layers, 8192 samples
1.00
6
> 095 $08
i g
£ S
4 5 S
o 2
2090 _ c 3o
i: —_— c *
[—_ c (00D) 5
9 3
s S
5 0.85 304
2 3 2
< =
” /—\/\/\/\
0
0 10 20 30 40 50 00

epoch epoch train test test (OOD)

Hamming Weight Performance

Loss curve (Hamming): 3 layers, 8192 samples

——— Accuracy curve (Hamming): 3 layers, 8192 samples

——— test loss
—— test loss (OOD) 1.00 A

0.95 1

0.90 - train acc

-— test acc

- test acc (O0OD)

epoch

Final Accuracy (% bits correct)

1.0

4
®

=3
o

I
IS

o
N

0.0

Final accuracy (Hamming): 3 layers, 8192 samples

train

test

test (OOD)

Accuracy (% bits correct)

0.85

0.80

10

20

epoch

30

40

50

Determine Prime

A prime number is a natural number greater
than 1 that is not a product of two smaller
natural numbers.

&

Prime Numbers

)
]
o]
=l
=)

13) (17} (19 (23} (29
31 (37) (41 [43) (47
53) (59) (61 [67) (70
73] (79) (83 (89) (97

Image Source: https://www.geeksforgeeks.org/prime-numbers/

The Mobius Function

1 ifn=1
p(n) =< (=1)% if nis the product of k distinct primes
0 if n is divisible by a square > 1

e If nis not square free, Mobius outputs 0
e If nis square free, Mobius tells us the
whether n has a odd or even number of

prime divisors

o 1 if even
o -1ifodd

Image Source: https://en.wikipedia.org/wiki/M%C3%B6bius_function

Determine Prime

Encoding

Integer: Normalized between 0 and 1
Binary: 14-bit representation
Modular: an array of remainders when

divided by primes up to N=100

Something Interesting

Loss Curves

Integer encoding has a nearly constant loss
curve, suggesting the model struggles.
Binary and Modular embeddings show a steep

drop in loss, indicating faster learning.

Accuracy Trends

Integer encoding accuracy remains constant
(~88%), suggesting a bias toward a simple rule.
Binary encoding achieves stable accuracy but

fluctuates.

Modular encoding performs similarly but with

more variance.

Accuracy vs. Input Type for Different Dataset Sizes

, sl e o 8
- Increasing the 1 . ?
sample size doesn’t 08— L
seem to help
0.7 L 2
performance R
- Modular slightly J
outperforms the ‘ 1
others
- Overall, Prime is el
learnable 8] hmato
03 e N=10000 @
int binary modular
Input Type

0390

0385

Loss

0380

0375

Loss

Loss

Loss Curve: int, 3 Layers, 10000 Samples

Test Accuracy: int, 3 Layers, 10000 Samples

—e— Tain Loss 0.92 — Test Accuracy
0.90
>
© 088
€
0.86
W o
[20 40 60 80 100 [20 40 60 80 100
Epoch Epoch
Loss Curve: binary, 3 Layers, 10000 Samples Test Accuracy: binary, 3 Layers, 10000 Samples
088
—e— Train Loss — Test Accuracy
086
Z 084
g
2
B4
082
080
[20 40 60 80 100 o 20 40 60 80 100
Epoch Epoch
Loss Curve: modular, 3 Layers, 10000 Samples Test Accuracy: modular, 3 Layers, 10000 Samples
—e— Train Loss
088
087
z
g
g os6
B4

085

— Test Accuracy

Epoch

20 40 60 80 100
Epoch

Loss

Prime Determination Performance

0.390

0.385

0.380

0.375

Loss Curve: int, 3 Layers, 10000 Samples

Test Accuracy: int, 3 Layers, 10000 Samples

—e— Train Loss

Accuracy

0.90

0.86

—— Test Accuracy

0 20 40 60 80 100

Epoch

Epoch

Left to right, top to bottom:
Integer, binary, and modular

embeddings

Loss

Loss

Loss Curve: binary, 3 Layers, 10000 Samples

Test Accuracy: binary, 3 Layers, 10000 Samples

] 0.88
0.35 —e— Train Loss —— Test Accuracy
0.30 A
0.86
0.25 A
0.20 A 2 0.84
c
3
3
0.15 q 2
0.82 1
0.10 4
0.05 A 0.80 4
0.00 +— r T r r T r r r r r
0 20 40 60 80 100 20 40 60 80 100
Epoch Epoch
Loss Curve: modular, 3 Layers, 10000 Samples Test Accuracy: modular, 3 Layers, 10000 Samples
0.40 A
—e— Train Loss
0.35 A 0.88
0.30 A T
0.87 4
0.25 A
>
9
0201 £
3 0.86 -
<
0.15 4
0.85
0.10 4
0.05
0.84
—— Test Accuracy
0.00 4
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch

The Mobius Function

Integer
- Loss decreases slightly but fluctuates, showing minimal learning progress.
- Accuracy remains constant (~38%), suggesting the model struggles to generalize.
Binary
- Loss decreases consistently but at a slower rate compared to modular.
- Accuracy fluctuates but reaches ~57%, making it an effective encoding for learning
the Mdbius function.
Modular
- Loss decreases steadily, indicating effective learning.
- Accuracy starts low (~40%) but gradually improves to ~48%, showing that modular
encoding is informative but harder to learn.
Conclusions

- Integer encoding is the least effective, likely due to its smooth structure, which lacks
rich features for learning Mdébius.

- Binary encoding performs good, suggesting that the bitwise structure provides
useful patterns.

- Modular encoding is intermediate but has higher variance, possibly requiring a
deeper network.

1.0920

10918

10916

9 10914
k)

1.0912

10910

1.0908

1.0906

Loss

Loss

1.00

Loss Curve: int, 3 Layers, 10000 Samples

Test Accuracy: int, 3 Layers, 10000 Samples

—e— Train Loss

0.405

0.400

0395

0.390

0385

Accuracy

0.380

0375

0370

0365

— Test Accuracy

4 10 20 30 40 50 4 10 20 30 40 50
Epoch Epoch
Loss Curve: binary, 3 Layers, 10000 Samples Test Accuracy: binary, 3 Layers, 10000 Samples
—e— Train Loss 258 —— Test Accuracy
057
056
>
g
3
& 055
054
053
[10 20 30) 50 0 10 20 30 40 50
Epoch Epoch
Loss Curve: modular, 3 Layers, 10000 Samples Test Accuracy: modular, 3 Layers, 10000 Samples
—e— Train Loss 0150 —— Test Accuracy
048
046
>
g
S 04a
<
042
0.40
038
0 10 20 30 40 50 0 10 20 30 40 50

Epoch

Epoch

Mobius Function Performance

Loss Curve: int, 3 Layers, 10000 Samples Test Accuracy: int, 3 Layers, 10000 Samples

Loss Curve: binary, 3 Layers, 10000 Samples

Test Accuracy: binary, 3 Layers, 10000 Samples

0.405
—e— Train Loss —— Test Accuracy 0.98 0.58 4
L0920 0.400 —e— Train Loss o —— Test Accuracy
1.0918 0.395 0.96
1.0916 0.390 0.57 4
0.94
>
9 10914 8 0385
C} 3
1.0912 N 0.380 0:92.4 0.56
oy
1.0910 93z @ 0.90 g
0370 3 o
1.0908 & & 0.55 1
0.365 0.88 1
1.0906
o 10 20 40 50 0 10 20 40 50
Epoch Epoch 0.86 4 0.54 4
0.84 4
0.53 4
0.82 4
T v y T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch
Loss Curve: modular, 3 Layers, 10000 Samples Test Accuracy: modular, 3 Layers, 10000 Samples
1.10 A —e— Train Loss 0.50 4 —— Test Accuracy
0.48 4
1.05 A
0.46
H . 1.00 >
eriori Op 1O pottom. g g
) K] 3 0.44 4
. <
Integer, binary, and modular
beddings
g 0.90 1 0.40 4
0.38 1
T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Some More Experiments

Experiments on predicting the Mobius Function varying encoding, Inspired by a workshop at Working Mathematician
sample size, and number of hidden layers. Seminar, which encodes numbers as binary and
- Modular outperform the others when number of hidden layers learns the probability of each possible output.
increase.

- Sample size and number of hidden layers doesn’t affect the
i Model Accuracy: 0.5529
performance of blnary much. Accuracy for predicting -1: 0.8699

- Integer struggled. Accuracy for predicting 1: 0.1265
Accuracy for predicting 0: 0.6378
Accuracy for predicting +1: 0.4981

Accuracy vs. Input Type for Different Dataset Sizes

0651 ® N=100 °)
@ N=1000 Loss over time
e N=10000 0 —
110 —— Training loss
0.60 4 L4 —— Validation loss
° s 1.05
0.55 5
1.00
>
® ° []
5 050 °
g . 0.95
0.45 ® 0:90
0.40 ° 0.85 -
]
0.80
0354 ¢
int binary modular 0 200 400 600 800

Input Type Epoch

https://www.google.com/url?q=https%3A%2F%2Fsites.google.com%2Fview%2Fmlwm-seminar-2022
https://www.google.com/url?q=https%3A%2F%2Fsites.google.com%2Fview%2Fmlwm-seminar-2022

Totient Function

43

42

Accuracy (%)

5
S

39 A

38

37 1

1
o) =n]](1-2),
Definition p\n(P)

counts the positive integers up to a given
integer n that are relatively prime to n 20 12
Encoding: n nin m-ary representation > %

40 | 40

(e.g., binary, base 3, etc.). 50 a2
Label: ¢(n) mod 10 2

For example: Given integer 1234, the 80 54
label will be ¢(1234) % 10, whichis6 ="

MOUEl ALLUraly vs. base

@(n)for1<n <100 2.0+

2|3

~

16
12
24
30
24
40
44

2
12
22
20
42
52
36
72
82
60

5
a8

—8— Train Accuracy
-~ Test Accuracy
~-&* OOD Accuracy

Base

4
2
6
8
16
20
18
32
36

24
46

Training Loss vs. Epochs for Different Bases

7
6

o |||

5
4
8 16 6 18| 8

201218 12|28 8

241236 18|24 16

2422 46 16 |42 20

4024 | 36 28 |58 16

4820 66 32|44 24

Training Loss

4036 |60 24|78 32

64 42 56 40|88 24

72 32 96 42 60 40 1511 —— = —

Epoch

Findings:

1. Training Behavior
Training loss converges across different bases, showing that the model
learns some structure.

2. Accuracy is low (~40%), meaning the MLP struggles to generalize.

3. Testand OOD accuracy fluctuate across bases, with no clear trend of
improvement.

4. The model likely captures some structure but fails to generalize well.

Totient Function - more experiments

Investigate the impact of changing the modular value
when computing ¢(n):

Changing modular of Euler’s Totient Function
Encoding: binary

Label: ¢(n) % modular

For example: Given integer 1234, the label will be ¢
(1234) % modular, which is 6 when modular is 10
Reach the highest accuracy at ¢(x) % 3

Whether two given numbers are coprime:

Due to the definition of Euler’s Totient Function, I
also examined on simple MLP’s ability to learn if two
given numbers are coprime.

The accuracy is around 60 to 70%, which reach the
highest accuracy at base 6.

The simple MLP performs better on coprimality
classification than on learning the totient function.

70

Accuracy (%)
s o o
8 3 3

w
8

N
o

751

70 1

Accuracy (%)

60

55

Model Accuracy vs. Modular at base 2

—e— Train Accuracy
Test Accuracy
& 00D Accuracy

Model Accuracy vs. Base

65 1

—e— Train Accuracy
Test Accuracy
--&+ 00D Accuracy

Python Code Synthesis

