Functions NN's Can Learn
WXML: Math Al Lab



Evals

- Final train accuracy

- Final val accuracy

- In-distribution test accuracy

- Out-of-distribution test accuracy



Background (things to mention)

—What is a neural network?

—Mention various choices: number of hidden layers, dimension of hidden layers,
activation function, choice of stochastic gradient descent algorithm, but most
important choice turned out to be encoding of input and output vectors

—Universal Approximation Theorem (approximate arbitrarily well on *bounded*
domain (same true for polynomials..)



The problem:

How does the encoding affect how
hard it is for a neural network learn
number-theoretic functions?



Model architecture + training details

- Model: 2-layer MLP

- Optimizer: SGD with learning rate 1e-3
- Loss: Binary cross-entropy*

- Hidden Layers: 1

- Input dim: N/A

- Hidden dim: N/A

- Output dim: N/A

- Samples: 8192

- Batch size: 32

- Epochs: 50

- Train-test split: 80% train, 20% test

- Out-of-distribution test samples: 1024



Neural Network
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“k-ary” Representations

Examples:
> Binary representations (k = 2) > Ternary representations (k = 3)
; 27 28 25 2% 23 22 o1 0 Ternary to Decimal Conversion
srayrumser 10001010 N E D a5 e
B;r;imz: 1+26 0+25 0+24Q E (f T (f T
conversionl23 1 422 O +21X1 + 0 Q 24 33 32 o 30
Decimal numoer (138)14 > 34q + 3340 + 32+ + 314 +30%0

—>81+0+18+0+2

=> 10119

References: learningc.org, geeksforgeeks.org



Parity
f(x) = x (mod 2)

Function Details:

e Input: xXEZ
e Output: f(x)€{0, 1}

Encoding:

> (Case 1: The input & output are integers
o Resorts to random guessing (50% Training Accuracy)
> (Case 2: The input & output are binary representations

o 100% Training Accuracy
o Neural network simply looks at the Oth element of the binary

Loss curve (Parity): 3 layers, 8192
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Modular Arithmetic Experimentation

vV

f(x) = x (mod n)

We vary parameter k: ‘k-ary’
representation (binary, ..., 20-ary)

We also vary parameter n: ‘mod n’ (2-20)
If k = n, super high accuracy but breaks
down around n=k=12

If k divides n, super high accuracy!
o Eg.k=6,n=3vsn=4

If k and n are relatively prime, difficulty
o Egk=7,n=6

Explanations

base
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Generalizing Hamming Weight

- The Hamming Weight of a bitstring s is the number of 1's in the bitstring.
- For example, Wt(00110) = 2, Wt(11011) = 4, Wt(10) = 1

- Two output encodings: either one real output, and another with two
outputs measuring probabilities that it is 0 and 1

Loss curve (Hamming): 3 layers, 8192 samples Accurac y curve (Hamming): 3 layers, 8192 samples Final accuracy (Hamming): 3 layers, 8192 samples
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Hamming Weight Performance

Loss curve (Hamming): 3 layers, 8192 samples
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Determine Prime

A prime number is a natural number greater
than 1 that is not a product of two smaller
natural numbers.

&

Prime Numbers
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Image Source: https://www.geeksforgeeks.org/prime-numbers/

The Mobius Function

1 ifn=1
p(n) =< (=1)% if nis the product of k distinct primes
0 if n is divisible by a square > 1

e If nis not square free, Mobius outputs 0
e If nis square free, Mobius tells us the
whether n has a odd or even number of

prime divisors

o 1 if even
o -1ifodd

Image Source: https://en.wikipedia.org/wiki/M%C3%B6bius_function




Determine Prime

Encoding

Integer: Normalized between 0 and 1
Binary: 14-bit representation
Modular: an array of remainders when

divided by primes up to N=100

Something Interesting

Loss Curves

Integer encoding has a nearly constant loss
curve, suggesting the model struggles.
Binary and Modular embeddings show a steep

drop in loss, indicating faster learning.

Accuracy Trends

Integer encoding accuracy remains constant
(~88%), suggesting a bias toward a simple rule.
Binary encoding achieves stable accuracy but

fluctuates.

Modular encoding performs similarly but with

more variance.

Accuracy vs. Input Type for Different Dataset Sizes
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Loss

Prime Determination Performance
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The Mobius Function

Integer
- Loss decreases slightly but fluctuates, showing minimal learning progress.
- Accuracy remains constant (~38%), suggesting the model struggles to generalize.
Binary
- Loss decreases consistently but at a slower rate compared to modular.
- Accuracy fluctuates but reaches ~57%, making it an effective encoding for learning
the Mdbius function.
Modular
- Loss decreases steadily, indicating effective learning.
- Accuracy starts low (~40%) but gradually improves to ~48%, showing that modular
encoding is informative but harder to learn.
Conclusions

- Integer encoding is the least effective, likely due to its smooth structure, which lacks
rich features for learning Mdébius.

- Binary encoding performs good, suggesting that the bitwise structure provides
useful patterns.

- Modular encoding is intermediate but has higher variance, possibly requiring a
deeper network.
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Mobius Function Performance
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Some More Experiments

Experiments on predicting the Mobius Function varying encoding, Inspired by a workshop at Working Mathematician
sample size, and number of hidden layers. Seminar, which encodes numbers as binary and
- Modular outperform the others when number of hidden layers learns the probability of each possible output.
increase.

- Sample size and number of hidden layers doesn’t affect the
i Model Accuracy: 0.5529
performance of blnary much. Accuracy for predicting -1: 0.8699

- Integer struggled. Accuracy for predicting 1: 0.1265
Accuracy for predicting 0: 0.6378
Accuracy for predicting +1: 0.4981

Accuracy vs. Input Type for Different Dataset Sizes
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Totient Function
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Findings:

1. Training Behavior
Training loss converges across different bases, showing that the model
learns some structure.

2. Accuracy is low (~40%), meaning the MLP struggles to generalize.

3. Testand OOD accuracy fluctuate across bases, with no clear trend of
improvement.

4.  The model likely captures some structure but fails to generalize well.



Totient Function - more experiments

Investigate the impact of changing the modular value
when computing ¢(n):

Changing modular of Euler’s Totient Function
Encoding: binary

Label: ¢(n) % modular

For example: Given integer 1234, the label will be ¢
(1234) % modular, which is 6 when modular is 10
Reach the highest accuracy at ¢(x) % 3

Whether two given numbers are coprime:

Due to the definition of Euler’s Totient Function, I
also examined on simple MLP’s ability to learn if two
given numbers are coprime.

The accuracy is around 60 to 70%, which reach the
highest accuracy at base 6.

The simple MLP performs better on coprimality
classification than on learning the totient function.
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